DynGEM: Deep Embedding Method for Dynamic Graphs
نویسندگان
چکیده
Embedding large graphs in low dimensional spaces has recently attracted significant interest due to its wide applications such as graph visualization, link prediction and node classification. Existing methods focus on computing the embedding for static graphs. However, many graphs in practical applications are dynamic and evolve constantly over time. Naively applying existing embedding algorithms to each snapshot of dynamic graphs independently usually leads to unsatisfactory performance in terms of stability, flexibility and efficiency. In this work, we present an efficient algorithm DynGEM based on recent advances in deep autoencoders for graph embeddings, to address this problem. The major advantages of DynGEM include: (1) the embedding is stable over time, (2) it can handle growing dynamic graphs, and (3) it has better running time than using static embedding methods on each snapshot of a dynamic graph. We test DynGEM on a variety of tasks including graph visualization, graph reconstruction, link prediction and anomaly detection (on both synthetic and real datasets). Experimental results demonstrate the superior stability and scalability of our approach.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملGraphvae: towards Generation of Small Graphs Using Variational Autoencoders
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks only, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with linearization of such discrete structures by ha...
متن کاملGraphvae: towards Generation of Small Graphs Using Variational Autoencoders
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks only, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with non-differentiability of such discrete structur...
متن کاملGraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
Deep learning on graphs has become a popular research topic with many applications. However, past work has concentrated on learning graph embedding tasks, which is in contrast with advances in generative models for images and text. Is it possible to transfer this progress to the domain of graphs? We propose to sidestep hurdles associated with linearization of such discrete structures by having ...
متن کامل